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Abstract:

Recent advances in artificial intelligence —particularly Vision-Language Models
(VLMs)—offer promising avenues for enhancing microscopic diagnostics. This review
synthesizes the current landscape of VLM applications across microbiology, hematology,
cytology, and histopathology, spanning tasks such as Gram stain classification, cell-type
recognition, feature localization, captioning, and report drafting. We outline how VLMs
integrate visual features with domain-specific prompts to support triage, decision
support, and quality control, while highlighting opportunities for few-shot and zero-shot
generalization to rare findings. In parallel, we compare conventional convolutional
pipelines with VLM-enhanced workflows, emphasizing gains in scalability,
reproducibility, and explainability through multimodal rationales and grounded visual
evidence. Key challenges include data curation and harmonization across laboratories,
domain shift from variable staining and optics, bias and safety risks, limited task-relevant
benchmarks, and the need for rigorous human-in-the-loop evaluation in clinical contexts.
We propose a practical roadmap for deployment —covering dataset governance, prompt
and template standardization, uncertainty reporting, and audit trails —alongside research
priorities in robust evaluation, privacy-preserving learning, and alignment with clinical
guidelines. Overall, VLMs are poised to complement expert microscopy by accelerating
routine workflows and improving documentation, provided their adoption is guided by
transparent validation and fit-for-purpose governance.

Keywords: Vision-Language Models (VLMs); Medical Laboratory Science; Microscopy;
Artificial Intelligence; Diagnostic Automation

Oncol. Nucl. Med. Transplantol. 2025;1(2):0nmt008 https://doi.org/10.63946/0nmt/17316



Oladosu et al.

Oncol. Nucl. Med. Transplantol. 2025;1(2):0nmt008

Introduction

Microscopy has historically been fundamental
in medical laboratory diagnostics, providing direct
visualization of cellular and microbial structures crucial
for the identification of infectious, haematologic, and
histopathological diseases. In microbiology, techniques
such as Gram staining, Ziehl-Neelsen staining, and wet
mounts offer swift initial assessments of bacterial,
fungal, and parasitic infections. In hematology, the
analysis of peripheral blood smears facilitates a
comprehensive evaluation of erythrocyte and leukocyte
morphology, assisting in the identification of anemia,
hematologic malignancies, and platelet abnormalities.
The histopathological assessment of stained tissue
sections, especially with hematoxylin and eosin, aids in
the analysis of architectural and cytological
characteristics pertinent to malignancy, inflammation,
and tissue degeneration. These routines are crucial to
clinical decision-making, disease surveillance, and
medical education [1].

Notwithstanding its diagnostic significance,
conventional microscopy is limited by its manual
characteristics and reliance on human proficiency.
Variability in interpretation, operator tiredness, and
training discrepancies contribute to diagnostic errors
and diminished reproducibility. In high-throughput or
resource-constrained environments, the scarcity of
competent workers, protracted slide evaluations, and
infrastructural inadequacies impede prompt and
precise diagnosis. These issues show how important it
is to have systems that can be scaled up, copied, and
improved using computers to help people make better
decisions and reduce workload bottlenecks.

Artificial intelligence (Al), especially deep
learning approaches like convolutional neural
networks (CNNs), has been useful in automating the
process of finding patterns in medical images in
domains like radiology, pathology, and cytology.
However, CNNs usually give outputs that can't be
understood, like classification scores or bounding
boxes, because they can't put results in terms that are
useful for therapy. Because of this limitation, there has
been more interest in multimodal models that include
an understanding of both text and images [2].

Vision-Language Models (VLMs) are a new
type of Al that makes it possible to understand both
images and words at the same time. Ultilizing
architectures like CLIP (Contrastive Language-Image
Pretraining) and GPT-style language models, VLMs can
produce structured descriptions or diagnostic
narratives from visual input, so aligning more closely
with the interpretive processes of laboratory specialists.
A VLM can classify a Gram-stained image while
simultaneously detailing cell morphology, staining

characteristics, and probable organism classification —
offering more comprehensive contextual information
than unimodal models [3].

This article critically analyses the function of
VLMs in enhancing diagnostic processes within three
areas of medical microscopy: microbiology,
hematology, and histopathology. We consolidate
contemporary evidence from peer-reviewed research to
evaluate the capabilities, performance measures (e.g.,
accuracy, AUC, F1 scores), and limits of current VLMs
in these domains. Additionally, we tackle critical
technological, ethical, and implementation difficulties,
including data annotation quality, generalisability
across varied clinical environments, privacy concerns,
and regulatory monitoring. This review seeks to
establish a practical and evidence-based framework for
the incorporation of VLMs into clinical laboratory
practice by contextualizing them within the larger
scope of diagnostic automation. To elucidate the
interpretative disparity between classic AI models and
Vision-Language Models (VLMs), we present a visual
example (Figure 1) that illustrates how each model type
examines and conveys results from the identical
haematologic smear. This contrast highlights the
interpretability advantage of VLMs in generating
elaborate, human-like narratives [4].

Comparative Output of CNN vs Vision-Language
Model in Blood Smear Interpretation

CNN Vision-Language Model

“Large cell with high nuclear-

to-cytoplasmic ratio, fine
chromatin, and prominent
nucleolus, suggestive
of a myeloblast.”

“Blast cell detected”

Figure 1. Contrasting Outputs: Convolutional
Neural Networks (CNNs) vs Vision-Language
Models (VLMs) in Blood Smear Interpretation

This graphic displays a comparative analysis of
outputs generated by a Convolutional Neural Network
(CNN) and a Vision-Language Model (VLM) reading
the same blood smear image. The CNN assigns a
categorical label—“Blast cell detected” —whereas the
VLM generates a comprehensible descriptive report:
“Large cell with a high nuclear-to-cytoplasmic ratio,
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fine chromatin, and prominent nucleolus, indicative of
a myeloblast.” This comparison underscores the
narrative interpretability of VLMs, which emulate

Overview of Vision-Language Models (VLMS)

Vision-Language Models (VLMs) are a type of
multimodal Al system that can interpret and combine
visual and written input at the same time. Unlike
traditional unimodal models that only work with
images or text, VLMs combine these two types of data.
This makes it easier to do things like captioning photos,
answering visual questions, and reasoning across
multiple modalities. These qualities make it easier to
move from static categorization to outputs that are
easier to understand. This lets models describe visual
content in coherent natural language and connect it to
contextual information.

Many different VLM designs work well on
general-purpose datasets. Some of these models
combine visual features with semantic text
embeddings, while others add visual inputs to
language models. In medical imaging, these features
make it possible to find morphological patterns and
make descriptive narratives that match the clinical
record. For instance, when used on annotated
pathology photos, VLMs can find features like cellular
atypia or structural disorganization and present the
results in structured prose that seems like a report from
an expert [5].

This is different from standard convolutional
neural networks (CNNs), which usually just give one
output label without any context. Convolutional Neural
Networks (CNNs) can correctly sort cell kinds or
disease classifications, but they can't explain why they
make the predictions they do. On the other hand, VLMs
can give you a lot of information, including seeing
Gram-positive cocci in chains and suggesting how to
group them, or finding macrocytic erythrocytes next to
hypersegmented neutrophils, which are signs of certain
blood illnesses. These narrative outputs help with
diagnosis and serve instructional and documentation
purposes.

VLMs help with both pattern recognition and
verbal expression of findings in microscopy-based
diagnostics, which include microbiology, hematology,
and histopathology. These are both important for
laboratory reporting. Their outputs can help lab
scientists by giving them a first look at things that need
to be evaluated and validated, which could lower the
number of different diagnoses and the time it takes to
get results. Also, in places where resources are limited
and there aren't enough trained specialists, VLMs may
help with diagnosis by standardizing outputs and
finding unusual patterns for experts to look at [6].

human diagnostic reasoning more proficiently than
conventional CNN outputs.

There are usually four steps to using VLMs in
microscopy workflows: getting high-resolution digital
images, processing them by the VLM to make
structured descriptions, connecting with laboratory
information systems for documentation, and having
experts check the results before reporting. This method
makes it easier to create a hybrid framework for Al-
assisted diagnostics that puts a premium on
transparency and reproducibility while having human
oversight [5].

There are several possible benefits to using
VLMs in microscopy, but their usage must be controlled
by strict validation, clear performance standards, and
appropriate regulatory frameworks. They are a useful
tool for improving diagnostic procedures because they
can produce standardized, understandable outputs.
However, their real effectiveness depends on how well
the model holds up, how good the training data is, and
how well it works with current laboratory equipment.
There are four steps to adding VLMs to microscopy
workflows: getting high-resolution digital images,
having the VLM automatically interpret them, making
structured diagnostic descriptions, and having
laboratory professionals check them. Figure 2 shows an
example of this technique, which is a hybrid kind of
human-AI collaboration in which automation helps but
does not replace expert review. The goal of this system
is to make it easier to get diagnostic services in both
resource-rich and resource-limited settings, as well as
to make them easier to repeat and shorten the time it
takes to report [7].
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Figure 2. Workflow of Vision-Language
Model Integration in Microscopy-Based Diagnostics.
This figure illustrates the stepwise integration of a
Vision-Language Model (VLM) into a digital
microscopy workflow. It begins with image acquisition
from stained slides (e.g., blood smears, Gram stains,
histological sections), followed by VLM-based
interpretation, where both image analysis and natural
language reporting occur. The interpreted outputs are
integrated into the Laboratory Information System
(LIS), and final verification is conducted by a trained
human expert. This hybrid human-AI workflow is
designed to improve diagnostic efficiency,
reproducibility, and scalability in clinical laboratory
settings.

Utilization of Vision-Language Models in Microscopy

The application of Vision-Language Models
(VLMs) in microscopy signifies a significant
advancement in computational pathology, especially in
the automation of intricate visual interpretation tasks
that have historically relied on skilled human
assessment. By integrating visual and textual
modalities, VLMs create novel avenues for scalable and
interpretable  diagnostics. Nonetheless,  their
implementation necessitates a careful assessment of
their practical accuracy, repeatability, and contextual
constraints within laboratory settings. This section
offers a specialized evaluation of VLM integration in
microbiology, hematology, and histopathology.

Microbiology

Microscopy is essential for the prompt
detection of infectious pathogens by techniques such as
Gram stain and culture analysis. These procedures,
although swift and informative, necessitate a
sophisticated assessment of morphology, staining
quality, and spatial arrangement—abilities that
frequently differ based on experience and institutional
training.

Clinical Workflow Example: Gram-stain
triage (pre-/analytical/post-analytical).

Pre-analytical: After slide preparation and
staining, the system ingests a low-magnification
overview plus 2-3 high-power fields; specimen
metadata (source, ward, recent antibiotics) is pulled
from the LIS. Analytical: The VLM screens for
“organisms present/absent,” proposes Gram category
and basic morphology (e.g., “Gram-positive cocci in
clusters”), and produces a short rationale grounded in

highlighted regions. Targets: Site-defined goals include
>95% sensitivity for “organisms present,” 2>90%
specificity for negatives, and <60 s latency per slide to
enable rapid triage. Handoff: Positive or low-
confidence slides (e.g., high uncertainty or out-of-
distribution alert) are queued to a scientist for
confirmation; high-confidence negatives are batch-
released for secondary review later in the shift. Quality
assurance: Daily control slides are auto-scored; weekly
audits trend sensitivity/specificity and review false-
negatives. Post-analytical: Structured outputs (Gram
call + rationale + ROI thumbnails) are appended to the
LIS report with timestamps and versioned model IDs
for traceability. Impact: The triage step reduces time-to-
first-read for positives, cuts after-hours workload, and
standardizes preliminary descriptions while keeping
final sign-out with human experts.

VLMs trained on labeled Gram-stained images
have shown the ability to produce structured
descriptions that encapsulate bacterial morphology,
organization, and staining properties. In controlled
testing situations, many models attained classification
accuracies of 90% in distinguishing common bacterial
morphotypes. Nonetheless, difficulties remain in
generalizing these models due to varied staining
quality, unusual organisms, and imaging discrepancies,
particularly in low-resource environments [1].

In addition to stain interpretation, colony
morphology represents another domain where VLMs
could improve reproducibility. Descriptors, including
margin definition, pigmentation, and hemolysis
patterns, frequently recorded inconsistently in manual
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processes, can be systematically collected by models
trained on annotated culture photos. However,
significant intra-species heterogeneity and a scarcity of
available datasets continue to pose technical challenges.
Current research has not definitively established
whether these algorithms can surpass expert
microbiologists in atypical scenarios or in the presence
of mixed illnesses.

VLMs provide the capability to automate zone
diameter measurements and interpret breakpoints in
accordance with guidelines for antimicrobial
susceptibility testing (AST). Initial tests indicate over
85% agreement with human annotations in disc
diffusion testing; however, performance deteriorates in
cases of overlapping zones, indistinct edges, or
uncommon infections [8]. Moreover, regulatory and
process integration obstacles continue to pose
substantial impediments to practical implementation.
Figure 1 presents an organized diagram depicting the
workflow from slide digitization to VLM-assisted
interpretation and LIS integration, while Table 1
summarizes the comparative functionalities of VLMs
against traditional methods across several areas.

Haematology

The study of peripheral blood smears is an
essential diagnostic method in hematology for
assessing  erythrocyte  morphology, leukocyte
differentials, and platelet conditions. Manual review,
while helpful, exhibits significant inter-observer
variability and is susceptible to reader fatigue. VLMs
trained on annotated smears have shown significant
improvements in accuracy and interpretability [9].

A study examining six RBC morphologies
showed that a vision-language architecture model
attained a classification accuracy of 93.4% and an F1-
score of 0.91 for sickle cell detection, metrics
comparable to those of experienced hematologists.
Significantly, VLMs extend beyond mere labeling by
generating descriptive narratives, such as identifying
hypersegmented neutrophils and associating them
with macrocytic anemia patterns. These outputs
improve traceability and diminish ambiguity in
diagnostic communication [10].

Leukemic pathology adds additional intricacy.
Blast detection, Auer rod identification, and left-shifted
granulopoiesis recognition necessitate the integration
of morphological context with diagnostic reasoning.
Certain VLMs, when presented with expert-annotated
pictures, have demonstrated the capacity to produce
indicative interpretations; nonetheless, they necessitate
validation via immunophenotyping and professional
corroboration. In preliminary evaluations, metrics such
as sensitivity and specificity have varied from 85% to

95%, contingent upon the model, cell type, and staining
circumstances [11].

Notwithstanding these advancements,
difficulties endure. Numerous datasets are constrained
in terms of size, class equilibrium, and demographic
heterogeneity. Furthermore, the majority of models
have not been subjected to external validation in
various laboratory environments, constraining their
generalisability. The potential for overfitting to
particular staining techniques or imaging resolutions
also poses issues regarding transferability.

Histopathological Analysis

Histopathology is the most interpretatively
challenging area of diagnostic microscopy. The process
entails evaluating tissue architecture, cellular
morphology, and context-dependent patterns, typically
necessitating years of training. VLMs, when utilized on
digitized whole-slide photographs, have demonstrated
the capability to produce layered descriptions akin to
injtial diagnostic impressions [12].

For example, instead of categorizing an image
merely as "adenocarcinoma,” a VLM would articulate
"proliferation of atypical glandular structures
exhibiting mitotic figures and nuclear pleomorphism,"
accompanied by a diagnostic recommendation. In
assessments of glandular histology, VLMs exhibit
accuracy rates of 87-92% when compared to pathologist
annotations, with inter-model variability frequently
affected by the diversity of the training corpus and the
grade of resolution [13].

In the assessment and classification of tasks—
such as the allocation of Gleason or Nottingham
scores—VLMs have generated structured outputs
consistent with reference standards; nonetheless, error
rates escalate in marginal situations and in tissue
sections affected by inflammatory or necrotic variables.
Restricted availability to high-quality, curated datasets
for uncommon malignancies diminishes their
robustness across the diagnostic spectrum.

Tasks related to biopsy interpretation, such as
the identification of lymphovascular invasion, fibrosis,
or necrosis, are inadequately investigated due to the
complexities ~of data annotation. = Moreover,
interpretability in histology is essential; misdiagnosis
may result in substantial clinical repercussions.
Consequently, even slight advancements in automation
necessitate  corresponding  stringent  validation
processes, quality assurance systems, and human
oversight checks [14].

In an observational study of laboratory
trainees, more than 80% deemed VLM-generated
reports more useful than static atlas images [15].
Nonetheless, user happiness does not equate to
diagnostic validity. Wider implementation must

ONMT: https://www.onmtjournal.org


https://www.onmtjournal.org/

Oladosu et al.

Oncol. Nucl. Med. Transplantol. 2025;1(2):0nmt008

emphasize regulatory supervision, transparency, and
bias reduction —especially when models are developed

using institution-specific datasets that may not
represent the broader diversity of patients.

Table 1. Comparison of Traditional vs Vision-Language Model Methods in Microscopy.

morphology assessment

Domain Traditional Methods VLM-Based Applications
Microbiology Manual Gram stain interpretation and Automated recognition and descriptive synthesis of
colony morphology documentation Gram stains, colony features, and AST interpretations
Hematology Manual differential counts; subjective Automated cell classification with natural language

reporting of abnormalities and differential
suggestions

and morphologic interpretation

Histopathology | Pathologist-dependent tumor grading

Structured, explainable outputs aligned with
histologic grading and narrative reporting

Workflow Variable; dependent on expert
Speed availability

Real-time output generation; potential for streamlined
reporting

Reproducibility | Prone to inter-observer variability

Consistent, model-driven output across repeated
evaluations

Accessibility Limited in settings lacking skilled

personnel

Scalable across low-resource environments; supports
telepathology

In summary, VLMs show strong promise in
augmenting microscopy diagnostics, particularly in
enhancing interpretability, improving workflow
efficiency, and supporting underserved settings.
However, enthusiasm must be balanced with caution.

Rigorous external validation, performance
benchmarking, and integration into regulated
diagnostic frameworks are essential to ensure safety,

generalizability, and equitable deployment.

Practical Benefits and Contextual Significance of Vision-Language Models in Microscopy

Vision-Language Models (VLMs) provide a
novel approach to enhancing interpretability,
consistency, and operational efficiency in microscopy-
based diagnostics. Their incorporation into laboratory
operations is motivated not solely by innovation but by
the quantifiable benefits they provide in
standardization, explainability, and scalability. This
section rigorously analyses these benefits and
delineates their practical significance, while also
recognizing existing limitations and areas that need
further assessment [16].

Standardization and  Consistency in
Diagnosis

One big problem with classical microscopy is
that it relies on people to interpret the results. Inter-
observer variability is still a big problem in diagnostic
settings like Gramme stain, leukocyte morphology, and
histologic grading, even for seasoned professionals.
Vision-language models (VLMs) trained on image-text
pairs that have been annotated by experts can help
reduce this unpredictability by giving outputs that are
structured and consistent [17].

VLMs have been able to correctly classify more
than 90% of some morphologies in some areas, with F1-
scores ranging from 0.85 to 0.93, depending on how
hard the task is and how good the dataset is. Still, their
results depend on the exact job and context; they may
not work as well in rare situations, with atypical

presentations, or with specimens that aren't stained
well enough [18]. Because of this, VLMs improve the
consistency of diagnoses, but they don't completely rid
the need for expert validation or replace established
quality assurance systems.

Understanding and Making Clear

Most traditional machine learning models,
especially convolutional neural networks (CNNs), only
give categorical labels or probability ratings, which
might make it hard to put things in a clinical
perspective. VLMs make it easier to understand by
using clinical language to describe things in a way that
makes sense. For example, instead of calling a cell a
"blast," a VLM might describe its nuclear-to-
cytoplasmic ratio, chromatin arrangement, and
nucleolar prominence. This would provide a clear
explanation similar to a pathologist's report [19].

This output format makes it easier to
understand and more open in clinical settings. It also
makes it easier to check for mistakes and encourages
communication between lab staff, trainees, and doctors.
Recent studies show that VLMs are better at speaking
clearly, but they may not be as good at making
diagnoses when the situation is unclear compared to
human specialists. It's best to think of them as decision
support tools rather than replacements for human skills
[20].
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Workflow Efficacy and Response Duration

Manual microscopy is intrinsically time-
consuming. The diagnostic procedure may be
prolonged,
laboratories or those experiencing personnel shortages,

particularly in high-throughput
due to the time required for slide scanning and findings
documentation. VLMs provide operational benefits by
automating the analysis of standard specimens. In
experimental installations, automated Gramme stain
reporting utilizing VLMs decreased reporting times by
more than 50%, with more significant enhancements
noted in low-resource settings [21].

Nonetheless, the incorporation of VLMs into
laboratory information systems and diagnostic
reporting frameworks is complex. Concerns with
picture preprocessing, system compatibility, and
output standardization must be resolved before
extensive implementation. The efficacy of VLMs is
consequently linked to infrastructure preparedness and
regulatory conformity.

Equity and Remote Diagnostic Assistance

A prominent advantage of VLMs is their
capacity to facilitate diagnosis in environments with
restricted access to expert microscopy. When integrated
with digital slide scanners and cloud-based platforms,
VLMs can deliver automated analyses in areas deficient
in on-site professionals. Equity in diagnostic access
relies not alone on algorithmic efficacy but also on
internet connectivity, hardware availability, and
language localization [22].

Presently, the majority of VLMs have been
trained on datasets sourced from high-resource
institutions, perhaps failing to encompass the complete
range of clinical presentations observed worldwide.

Rectifying this disparity necessitates intentional
initiatives to mix training data and assess performance
across geographically and demographically varied
populations.

Standardization of Educational Support and
Training

VLMs demonstrate potential as instruments for
medical education. Their capacity to emulate expert
analysis and elucidate morphological characteristics in
natural language renders them advantageous in
educational settings. In controlled investigations,
trainees exposed to VLM-generated outputs reported
enhancements in morphological comprehension and
increased confidence in interpretative tasks [23].

However, the educational benefit must be
assessed beyond subjective perceptions. Comparative
studies assessing objective learning outcomes—such as
pre/post-test performance or retention—are necessary
to validate their educational efficacy. Furthermore,
model explanations must conform to revised diagnostic
criteria and refrain from perpetuating obsolete or
inaccurate terminology, as noted in several initial
implementations.

Although VLMs offer
improvements to microscopy operations, their
advantages must be understood in relation to their
constraints. Diagnostic accuracy is extremely particular
to tasks, generalisability is a challenge, and regulatory

significant

avenues for clinical application are still developing.
Future investigations should emphasize prospective
trials, external validations, and implementation in
practical clinical environments. Only with such proof
can the function of VLMs be distinctly defined and
judiciously expanded within laboratory medicine [24].

Challenges in Implementation and Ethical Considerations

Notwithstanding the increasing interest in
Vision-Language Models (VLMs), their application in
clinical diagnostics is still in its infancy, with numerous
unresolved technical, infrastructural, and ethical
obstacles. Adoption has been inconsistent and largely
restricted to experimental or pilot environments. A 2024
global audit of 520 healthcare facilities revealed that
merely 14.7% have included generative Al tools into
their diagnostic procedures, with less than 5% utilizing
multimodal models like VLMs [25]. Most
implementations were primarily situated in academic
medical centers or Al-centric consortia, frequently
bolstered by specialized bioinformatics teams and
tailored infrastructure. The translation into wider
clinical practice has been obstructed by apprehensions
about model robustness, interpretability, medico-legal
risks, and the sufficiency of existing regulatory
frameworks [26].

Data Quality and Annotation Constraints

High-performance VLMs rely on extensive,
meticulously annotated image-text pairs; yet, medical
microscopy datasets are constrained, isolated, and
inconsistently organized. In contrast to typical
computer vision datasets (e.g., ImageNet), microscope
images exhibit significant variability in staining
techniques, magnification, resolution, and diagnostic
classification. The creation of high-quality datasets,
such as annotated Gramme stain panels,
comprehensive peripheral smear narratives, or
histopathology slide captions, generally necessitates
laborious annotation by board-certified experts.
Furthermore, semantic inconsistency —exemplified by
terminological heterogeneity within institutions or
inter-observer  discrepancies in  morphological
classifications—exacerbates the challenges of dataset
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standardization. These problems impede the scalability
and generalisability of trained models [27].

Model  Generalisability and  Clinical
Validation

VLMs trained on data from a restricted range of
institutions or geographic areas frequently demonstrate
inadequate external validity. The shape of erythrocytes
may vary among communities due to endemic
hemoglobinopathies or nutritional deficits. Histological
characteristics may differ based on fixation methods or
the anatomical site of the sample. In the absence of
stringent cross-institutional benchmarking, models
may underperform when used in unfamiliar clinical
settings. Although numerous initial validation
endeavors are present, such as the multi-center
evaluation of the BioGPT-VL dataset on hematology
smears (AUROC 0.84 = 0.03, n = 4 locations),
comprehensive, regulatory-grade investigations are
still limited [28]. Consequently, model performance
must be rigorously evaluated using varied,
representative validation sets and made publicly
accessible to guarantee clinical relevance.

Interpretability and User Confidence

Despite VLMs generating natural language
outputs, their internal reasoning processes are not
transparent. The risk of "hallucinations" —believable yet
erroneous interpretations —has been recorded in recent
assessments. A comparison study conducted by Yang et
al. in 2025 revealed that GPT-4V exhibited a
misunderstanding rate of 17.5% for wunusual
haematologic results, in contrast to 7.2% for pathologist
consensus [29]. This disparity can undermine clinician
confidence, particularly in critical situations. The use of
interpretable  characteristics, such as attention
heatmaps, structured report templates, and uncertainty
scores, may enhance transparency and promote safer
implementation. End-user feedback mechanisms are
crucial for rectifying model drift and enhancing
confidence.

Data Privacy, Security, and Regulatory
Compliance

Implementing and utilizing VLMs in
healthcare environments presents considerable privacy
risks. Microscopy pictures, although less innately
recognizable than radiological scans, may nonetheless
possess embedded metadata or be linked to uncommon
diagnoses. Jurisdictions like the EU and the U.S. impose
rigorous safeguards under GDPR and HIPAA,

Future Directions and Opportunities

Adding Vision-Language Models (VLMs) to
medical laboratory operations opens up a number of
strategic ways to improve both the accuracy of
diagnoses and the training of the staff. One of the most

respectively. Moreover, cross-border model training,
such as through federated learning or cloud-based fine-
tuning, presents legal and ethical challenges concerning
data sovereignty. Although technology precautions,
including de-identification and encrypted pipelines, are
progressing, they require enhancement through strong
institutional control and compliance auditing.
Regulatory bodies, such as the U.S. FDA and the
European Medicines Agency, have not yet granted
formal approval for any VLM as an independent
diagnostic instrument; existing implementations are
classified as “assistive” or “investigational,”
necessitating human monitoring [16].

Ethical Supervision and Human-Centric
Integration

The ethical implementation of VLMs must
reconcile the advantages of automation with
protections against excessive dependence and skill
degradation.  Uncritically  accepting  automated
microscopy results poses a risk of disseminating
diagnostic errors, particularly in instances of rare
diseases, unknown pathogens, or ambiguous
morphologies. Clinical integration must emphasize
hybrid workflows, wherein VLM outputs aid rather
than supplant expert interpretation. Enhancing the
capabilities of laboratory personnel, particularly in
resource-limited environments, is crucial to guarantee
that automation supports human decision-making
rather than supplanting it. Moreover, institutional
norms must explicitly define accountability in instances
of discrepancies between Al-generated results and
clinical outcomes [30].

Synopsis and Prognosis

The integration of VLMs into clinical
microscopy is promising yet intricate. It is essential to
address critical issues—dataset quality,
generalisability, explainability, data governance, and
ethical oversight—to go from research prototypes to
regulated, real-world implementations. Effective
execution necessitates interdisciplinary cooperation
among clinical pathology, machine learning, health
policy, and bioethics. Future endeavors must
emphasize worldwide benchmarking initiatives,
improvements in model transparency, and user-centric
deployment frameworks to guarantee that VLMs
promote diagnostic fairness instead of reinforcing
current gaps [31].

useful short-term uses is in education and training.
VLMs can be used as dynamic learning tools that let
you add notes to microscope pictures in real time, make
differential diagnoses, and create interactive Q&A
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settings that mimic how experts think. In places where
resources are limited and access to senior
diagnosticians is limited, these models may be useful as
scalable training tools. However, their effectiveness in
teaching needs to be proven through rigorous
evaluations of user performance before and after
exposure [21].

Progress depends on having big, diversified,
and expert-annotated microscopy datasets that are not
just for education. Medical microscopy data is different
from typical image-text datasets used in basic VLM
training since the staining, resolution, pathology
prevalence, and reporting methods vary from one
institution to another. To make sure that everyone is
included, people from all around the world need to
work together on this. Federated learning and privacy-
preserving data harmonization are two examples of
projects that can help scale up data collection without
putting patient privacy at risk [32].

Another important area for potential growth is
systems integration. For VLMs to be useful in real-
world diagnostic procedures, they need to work with

Conclusion

Vision-Language Models (VLMs) are a
potential way to use computers for microscopy-based
diagnostics because they combine extracting visual
features with understanding plain language. Their use
in microbiology, hematology, and histopathology may
make it easier to automate descriptive reporting, sort
through anomalous findings, and make sure that
interpretative output is always the same. However, the
present implementations are still in the testing phase,
and clinical use is limited to pilot-scale deployments in
institutions with a lot of resources.

There are many technological and institutional
problems that need to be solved before it can be
successfully integrated into clinical workflows. These
include creating standardized, high-quality training
datasets, thorough validation across several sites,
strong systems for finding and explaining errors, and
following changing rules and regulations for data
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both Laboratory Information Systems (LIS) and
Electronic Health Records (EHR). Integration could
make it possible to automatically highlight abnormal
morphology, provide draft diagnostic narratives, and
link patient histories or test findings across different
types of data. Early pilot experiments have shown that
it is possible to include massive language models in
radiology report workflows. Similar frameworks may
also work for pathology and microbiology [33].

Finally, future research should focus on
explainability, regulatory preparedness, and human-Al
collaboration. VLMs need to be made so that they can
clearly explain why a diagnosis was made. For
example, they may highlight parts of an image that
affect the output or measure how sure they are. Adding
feedback loops that let people fix or flag outputs will
make things safer and more trustworthy. The ultimate
goal is not to replace lab workers but to make decision-
support systems that make human knowledge even
better, especially in places where there are a lot of
samples or not enough staff.

governance. Without these protections, patient safety
could be at risk due to things like model overfitting,
diagnostic bias, or too much dependence on
automation.

Also, the ethical use of VLMs must always have
human monitoring, especially in unusual instances
with new presentations or rare diseases. Collaboration
between clinical labs, AI developers, and regulatory
bodies from other fields will be necessary to make sure
that VLMs improve, not replace, clinical reasoning. In
the end, we should not see them as independent
diagnosticians, but as cognitive aids that are part of
human-centered diagnostic ecosystems. To find out
how useful and reliable VLMs are in everyday clinical
practice, further real-world studies will need to be done
to look at their performance, how easy they are to
understand, and how well they fit into existing
workflows.
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