ONCOLOGY, NUCLEAR MEDICINE AND TRANSPLANTOLOGY
Review Article

Transforming Medical Laboratory Science with Vision-Language Models: A Focus on Microscopy in Microbiology, Hematology, and Histopathology

Oncology, Nuclear Medicine and Transplantology, 1(2), 2025, onmt008, https://doi.org/10.63946/onmt/17316
Publication date: Oct 21, 2025
Full Text (PDF)

ABSTRACT

Recent advances in artificial intelligence—particularly Vision–Language Models (VLMs)—offer promising avenues for enhancing microscopic diagnostics. This review synthesizes the current landscape of VLM applications across microbiology, hematology, cytology, and histopathology, spanning tasks such as Gram stain classification, cell-type recognition, feature localization, captioning, and report drafting. We outline how VLMs integrate visual features with domain-specific prompts to support triage, decision support, and quality control, while highlighting opportunities for few-shot and zero-shot generalization to rare findings. In parallel, we compare conventional convolutional pipelines with VLM-enhanced workflows, emphasizing gains in scalability, reproducibility, and explainability through multimodal rationales and grounded visual evidence. Key challenges include data curation and harmonization across laboratories, domain shift from variable staining and optics, bias and safety risks, limited task-relevant benchmarks, and the need for rigorous human-in-the-loop evaluation in clinical contexts. We propose a practical roadmap for deployment—covering dataset governance, prompt and template standardization, uncertainty reporting, and audit trails—alongside research priorities in robust evaluation, privacy-preserving learning, and alignment with clinical guidelines. Overall, VLMs are poised to complement expert microscopy by accelerating routine workflows and improving documentation, provided their adoption is guided by transparent validation and fit-for-purpose governance.

KEYWORDS

Vision-Language Models (VLMs) Medical Laboratory Science Microscopy Artificial Intelligence Diagnostic Automation

CITATION (Vancouver)

Okayo OD, Panwal NE, Ihuarulam OO, Nzunde MS, Nyimwadang FA, Oladosu TA, et al. Transforming Medical Laboratory Science with Vision-Language Models: A Focus on Microscopy in Microbiology, Hematology, and Histopathology. Oncology, Nuclear Medicine and Transplantology. 2025;1(2):onmt008. https://doi.org/10.63946/onmt/17316
APA
Okayo, O. D., Panwal, N. E., Ihuarulam, O. O., Nzunde, M. S., Nyimwadang, F. A., Oladosu, T. A., & Osunde., A. B. (2025). Transforming Medical Laboratory Science with Vision-Language Models: A Focus on Microscopy in Microbiology, Hematology, and Histopathology. Oncology, Nuclear Medicine and Transplantology, 1(2), onmt008. https://doi.org/10.63946/onmt/17316
Harvard
Okayo, O. D., Panwal, N. E., Ihuarulam, O. O., Nzunde, M. S., Nyimwadang, F. A., Oladosu, T. A., and Osunde., A. B. (2025). Transforming Medical Laboratory Science with Vision-Language Models: A Focus on Microscopy in Microbiology, Hematology, and Histopathology. Oncology, Nuclear Medicine and Transplantology, 1(2), onmt008. https://doi.org/10.63946/onmt/17316
AMA
Okayo OD, Panwal NE, Ihuarulam OO, et al. Transforming Medical Laboratory Science with Vision-Language Models: A Focus on Microscopy in Microbiology, Hematology, and Histopathology. Oncology, Nuclear Medicine and Transplantology. 2025;1(2), onmt008. https://doi.org/10.63946/onmt/17316
Chicago
Okayo, Okoroafor Dorcas, Nanmet Ephraim Panwal, Okeoma Obiageri Ihuarulam, Markus Saerimam Nzunde, Franca Aminci Nyimwadang, Tosin Ayodeji Oladosu, and Adesuwa Benedicta Osunde.. "Transforming Medical Laboratory Science with Vision-Language Models: A Focus on Microscopy in Microbiology, Hematology, and Histopathology". Oncology, Nuclear Medicine and Transplantology 2025 1 no. 2 (2025): onmt008. https://doi.org/10.63946/onmt/17316
MLA
Okayo, Okoroafor Dorcas et al. "Transforming Medical Laboratory Science with Vision-Language Models: A Focus on Microscopy in Microbiology, Hematology, and Histopathology". Oncology, Nuclear Medicine and Transplantology, vol. 1, no. 2, 2025, onmt008. https://doi.org/10.63946/onmt/17316

REFERENCES

  1. Tripathi N, Zubair M, Sapra A. Gram Staining. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 Jul 23]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK562156/
  2. Kim I, Kang K, Song Y, Kim TJ. Application of Artificial Intelligence in Pathology: Trends and Challenges. Diagnostics (Basel). 2022 Nov 15;12(11):2794. doi: 10.3390/diagnostics12112794
  3. Tao L, Zhang H, Jing H, Liu Y, Yan D, Wei G, et al. Advancements in Vision–Language Models for Remote Sensing: Datasets, Capabilities, and Enhancement Techniques. Remote Sens (Basel). 2025 Jan;17(1):162. doi: 10.3390/rs17010162
  4. Imran MT, Shafi I, Ahmad J, Butt MFU, Villar SG, Villena EG, et al. Virtual histopathology methods in medical imaging - a systematic review. BMC Med Imaging. 2024 Nov 26;24(1):318. doi: 10.1186/s12880-024-01163-7
  5. Hartsock I, Rasool G. Vision-language models for medical report generation and visual question answering: a review. Front Artif Intell. 2024 Nov 19;7:1430984. doi: 10.3389/frai.2024.1430984
  6. Vaz JM, Balaji S. Convolutional neural networks (CNNs): concepts and applications in pharmacogenomics. Mol Divers. 2021 Aug;25(3):1569-84. doi: 10.1007/s11030-021-10225-3
  7. Bertram CA, Stathonikos N, Donovan TA, Bartel A, Fuchs-Baumgartinger A, Lipnik K, et al. Validation of digital microscopy: Review of validation methods and sources of bias. Vet Pathol. 2022 Jan;59(1):26-38. doi: 10.1177/03009858211040476
  8. Gajic I, Kabic J, Kekic D, Jovicevic M, Milenkovic M, Mitic Culafic D, et al. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics (Basel). 2022 Mar 23;11(4):427. doi: 10.3390/antibiotics11040427
  9. Adewoyin AS, Nwogoh B. Peripheral blood film - a review. Ann Ib Postgrad Med. 2014 Dec;12(2):71-9.
  10. S A, Ganesan K, K BB. A novel deep learning approach for sickle cell anemia detection in human RBCs using an improved wrapper-based feature selection technique in microscopic blood smear images. Biomed Tech (Berl). 2023 Apr 25;68(2):175–85. doi: 10.1515/bmt-2022-0200
  11. Sehgal T, Sharma P. Auer rods and faggot cells: A review of the history, significance, and mimics of two morphological curiosities of enduring relevance. Eur J Haematol. 2023 Jan;110(1):14-23. doi: 10.1111/ejh.13872
  12. Imran MT, Shafi I, Ahmad J, Butt MFU, Villar SG, Villena EG, et al. Virtual histopathology methods in medical imaging - a systematic review. BMC Med Imaging. 2024 Nov 26;24(1):318. doi: 10.1186/s12880-024-01163-7
  13. Khan MYA, Bandyopadhyay S, Alrajjal A, Choudhury MSR, Ali-Fehmi R, Shidham VB. Atypical glandular cells (AGC): Cytology of glandular lesions of the uterine cervix. Cytojournal. 2022 Apr 30;19:31. doi: 10.25259/CMAS_03_11_2021
  14. Timakova A, Ananev V, Fayzullin A, Makarov V, Ivanova E, Shekhter A, et al. Artificial Intelligence Assists in the Detection of Blood Vessels in Whole Slide Images: Practical Benefits for Oncological Pathology. Biomolecules. 2023 Aug 29;13(9):1327. doi: 10.3390/biom13091327
  15. Ji J, Hou Y, Chen X, Pan Y, Xiang Y. Vision-Language Model for Generating Textual Descriptions From Clinical Images: Model Development and Validation Study. JMIR Form Res. 2024 Feb 8;8:e32690. doi: 10.2196/32690
  16. Hartsock I, Rasool G. Vision-language models for medical report generation and visual question answering: a review. Front Artif Intell [Internet]. 2024 Nov 19 [cited 2025 Jul 23];7. Available from: https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1430984/full
  17. Kim H, Hur M, d'Onofrio G, Zini G. Real-World Application of Digital Morphology Analyzers: Practical Issues and Challenges in Clinical Laboratories. Diagnostics (Basel). 2025 Mar 10;15(6):677. doi: 10.3390/diagnostics15060677
  18. Takita H, Kabata D, Walston SL, et al. A systematic review and meta-analysis of diagnostic performance comparison between generative AI and physicians. npj Digit Med. 2025;8:175. doi: 10.1038/s41746-025-01543-z
  19. Sarvamangala DR, Kulkarni RV. Convolutional neural networks in medical image understanding: a survey. Evol Intell. 2022;15(1):1-22. doi: 10.1007/s12065-020-00540-3
  20. Pillay TS. Increasing the Impact and Value of Laboratory Medicine Through Effective and AI-Assisted Communication. EJIFCC. 2025 Feb 28;36(1):12-25.
  21. Kurz CF, Merzhevich T, Eskofier BM, Kather JN, Gmeiner B. Benchmarking vision-language models for diagnostics in emergency and critical care settings. NPJ Digit Med. 2025 Jul 10;8(1):423. doi: 10.1038/s41746-025-01837-2
  22. Jahn SW, Plass M, Moinfar F. Digital Pathology: Advantages, Limitations and Emerging Perspectives. J Clin Med. 2020 Nov 18;9(11):3697. doi: 10.3390/jcm9113697
  23. Mavrych V, Yousef EM, Yaqinuddin A, Bolgova O. Large language models in medical education: a comparative cross-platform evaluation in answering histological questions. Med Educ Online. 2025 Dec;30(1):2534065. doi: 10.1080/10872981.2025.2534065
  24. Morales S, Engan K, Naranjo V. Artificial intelligence in computational pathology – Challenges and future directions. Digit Signal Process. 2021 Dec;119:103196. doi: 10.1016/j.dsp.2021.103196
  25. Jandoubi B, Akhloufi MA. Multimodal Artificial Intelligence in Medical Diagnostics. Information. 2025 Jul;16(7):591. doi: 10.3390/info16070591
  26. Qi Y, Mohamad E, Azlan AA, Zhang C. Utilization of artificial intelligence in clinical practice: A systematic review of China’s experiences. Digit Health. 2025 Jan-Dec;11:20552076251343752. doi: 10.1177/20552076251343752
  27. Ali M, Benfante V, Basirinia G, Alongi P, Sperandeo A, Quattrocchi A, et al. Applications of Artificial Intelligence, Deep Learning, and Machine Learning to Support the Analysis of Microscopic Images of Cells and Tissues. J Imaging. 2025 Feb;11(2):59. doi: 10.3390/jimaging11020059
  28. Safdari A, Keshav CS, Mody D, Verma K, Kaushal U, Burra VK, et al. The external validity of machine learning-based prediction scores from hematological parameters of COVID-19: A study using hospital records from Brazil, Italy, and Western Europe. PLoS One. 2025 Feb 4;20(2):e0316467. doi: 10.1371/journal.pone.0316467
  29. Yang Z, Yao Z, Tasmin M, Vashisht P, Jang WS, Ouyang F, et al. Unveiling GPT-4V’s hidden challenges behind high accuracy on USMLE questions: Observational Study. J Med Internet Res. 2025 Feb 7;27(1):e65146. doi: 10.2196/65146
  30. Mennella C, Maniscalco U, De Pietro G, Esposito M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon. 2024 Feb 29;10(4):e26297. doi: 10.1016/j.heliyon.2024.e26297
  31. Jung KH. Large Language Models in Medicine: Clinical Applications, Technical Challenges, and Ethical Considerations. Healthc Inform Res. 2025 Apr;31(2):114–124. doi: 10.4258/hir.2025.31.2.114
  32. Imran MT, Shafi I, Ahmad J, Butt MFU, Villar SG, Villena EG, et al. Virtual histopathology methods in medical imaging - a systematic review. BMC Med Imaging. 2024 Nov 26;24:318. doi: 10.1186/s12880-024-01163-7
  33. Negro-Calduch E, Azzopardi-Muscat N, Krishnamurthy RS, Novillo-Ortiz D. Technological progress in electronic health record system optimization: Systematic review of systematic literature reviews. Int J Med Inform. 2021 Aug;152:104507. doi: 10.1016/j.ijmedinf.2021.104507

LICENSE

Creative Commons License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.